Journal of Computational Physi&§0,373-393 (1999)

®
Article ID jcph.1999.6198, available online at http://www.idealibrary.conlnE &l.

A Roe Scheme for Ideal MHD Equations on 2D
Adaptively Refined Triangular Grids

P. F. Peyrarttt and P. Villedieu

*ONERA, Centre d’Etudes et de Recherches de Toulouse, DESP, 2 Avenue Edouard Belin, 31055 Toulouse
France; tMathématiques pour I'Industrie et la Physique, UMR CNRS 5640, URF MIG, Unigdpsitl
Sabatier, 118, Route de Narbonne, 31062 Toulouse Cedex, FrEDBERA, Centre d’Etudes et de
Recherches de Toulouse, DTIM/M2SN, 2 Avenue Edouard Belin, 31055 Toulouse Cedex, France
E-mail: pierre-francois.peyrard@onecert.fr, philippe.villedieu@onecert.fr

Received December 2, 1997; revised December 24, 1998

In this paper we present a second order finite volume method for the resolution
of the bidimensional ideal MHD equations on adaptively refined triangular meshes.
Our numerical flux function is based on a multidimensional extension of the Roe
scheme proposed by Cargo and Gallice for the 1D MHD system. If the mesh is
only composed of triangles, our scheme is proved to be weakly consistent with the
conditionV - B=0. This property fails on a cartesian grid. The efficiency of our
refinement procedure is shown on 2D MHD shock capturing simulations. Numerical
results are compared in case of the interaction of a supersonic plasma with a cylinder
on the adapted grid and several non-refined grids. We also present a mass loading
simulation which corresponds to a 2D version of the interaction between the solar
wind and a comet. © 1999 Academic Press
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1. INTRODUCTION

Astrophysicists are more and more interested in the numerical simulation of the i
MHD equations in order to study space plasma flows. In recent years, approximate Rie
solvers have been developed for this hyperbolic system, but most of the papers conce
applications.

Brio and Wu [4] have constructed the eigensystem of a Roe matrix in the special
y = 2. Dai and Woodward [8, 9] have proposed an approximate Riemann solver whi
only based on discontinuity waves. The method developed by Bell, Colella, and Tranger
[2] for hydrodynamic applications has been extended to the MHD equations by Zac
and Colella in [21]. Croisille, Khanfir, and Chanteur have introduced a kinetic formali
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374 PEYRARD AND VILLEDIEU

for the MHD system and derived a kinetic type solver [7]. All these methods have been f
tested on the Brio and Wu shock tube, but the numerical simulation of multidimensiol
flows presents additional difficulties, especially the conservation of the con#iti@= 0.

To deal with this constraint, different approaches have been investigated. Schmidt-\
[16] and Tanaka [17] proposed adding a correctioB aft each time step, but they needed
to solve an elliptic equation, which significantly increases the CPU time of a calculatic
To avoid this problem, Aslan and Kammash [1] and Powell [14] proposed modifying tl
MHD equations by introducing an additional source term, proportionsl-tB. The result
of this modification is thaV - B is then the solution of a transport equation which convect
it out of the domain.

In this paper, we present a simpler approach. We adapt the 1D Roe scheme of C
and Gallice [6, 5, 11] to derive a multidimensional numerical flux function and, as in [7
no particular treatment is done to enforce the conditiorB = 0. Since we use triangular
grids and the numerical flux related to the magnetic field is parallel to the interface of
cells, this constraint is verified in a weak sense, as for the kinetic scheme of Creftisille
[7]. We emphasize the necessity of using triangular grids. This property is not satisfied
more on a cartesian grid, as it will be proved numerically in Section 4.

The paper is organised as follows. Section 2 is devoted to the description of our numel
method and the refinement procedure. In Section 3, the weak consistency of the sct
with the constrainV - B =0 is analysed from a theoretical and numerical point of view. Thi
last part of the paper is devoted to 2D hypersonic plasma flows calculations. It is showr
this context, the efficiency of adaptively refined triangular grids.

2. DESCRIPTION OF THE NUMERICAL METHOD

2.1. Ideal MHD Model

We consider a one fluid ideal MHD model where the plasma is described by avera
macroscopic quantities. Under the following assumptions, quasineutrality, isotropy of
pressure tensor, infinite conductivity, and adiabaticity, the following set of equations can
derived [19] (scaling conventions in [12]),

p pu

u B-B
ki g Ly, |pu®utl(p+32)-B®B [ _ 1)
ot 2 BOU-U®B

(E+p+82)ju—(u-B)B
with the constraint
V-B=0. (2)
Herep, u, B, andp are the density, the velocity, the magnetic field, and the pressure. T
energyE is given by the state equation
E_ p " u-u n B-B
,-17% 7 2

wherey is the ratio of specific heats. The electric fi€ldatisfies the frozen-in-field equation

®3)

&=—uAB. (4)
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To define a finite volume scheme, it is sufficient to solve 1D Riemann problems at €
interface of the grid. The 1D projection (according to the coordinptd the system (1), (2)
modifies its structure. The 1D constraint applied to (2) ghBs/9n = 0; the 1D constraint
applied to the Faraday equation result$ B), /9t = 0 and hence

B, = constant (5)

and the 1D system consists of the seven equations parametrizgd by

W 9Fs, W) _

oW 6
at on ©
with
PUn
p pu +p+ BB
oUn n 2
pU; PUnUg — Bn BS
W=|rU|,  Fg W= pUntiz — BnB, ’
B: UnBg — Ug By
BEZ Un BZ - Uan
(E+ p+82)uy — (UnBZ + Ug By By + U, B, B,)
(7

& andz are the cartesian coordinates in the plane perpendicular to the.axis

2.2. Numerical Scheme

Let us denote b any cell of the meshk, the neighbour oK along the edge, ne
the unit normal vector oe oriented fromK to K¢, andAt the time step (see Fig. 1).

FIG. 1. Partofa 2D triangulation.
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The general expression of a finite volume scheme for the system (1) is

At

Ulr(H_l:UE _m

Q(UE’UQea nB,K>|e|’ (8)
ecdK

whereUy, is the value of the approximate solutibiy(t, X) on the cellK between times"
andt™?, |K| is the surface oK, and® (U, V, n) the numerical flux in the direction of the
vectorn. In our case, it has the expression

9)

Roe,
oU,V,n) = Tn—1<cbn (Pa(U), Pn(V)))’

0

where theT,, respectivelyP,, are mappings froniR® onto R®, respectivelyR® onto R,
defined as

P P
PUx oUn
pUy pUg
. pUz pU; Pa(U)
nU) =T, B, = BE =< B, ),
By B,
B, E
E B,

where @, £, z) are the coordinates related to the edge @fé°is a Roe numerical flux
related to the 1D system (6)—(7). We have chosen to adapt the 1D Roe scheme propos
Cargo and Gallice in [6]. It leads to the following expressiondd°®,

Roe, _ }
P, (U, V) = Z(FBH(Pn(U)) + Fg,(Pa(V)))

— [ ARS(Py(U), Pa(V)[Pa(V) — Pa(U)]

=

7

= 5 (Fa,(Pa(U)) + Fa,(Pa(V))) = > e ARy, (10)
k=1

whereAEfeis the Roe matrix of Cargo and Gallice related to the figx The characteristic

variablesy;, are defined by

o, = Loy - [Pa(V) = PaW)], k=17, (11)

whereL,,. k=1, 7, are the left eigenvectors @°®. Since the normal component of the
magnetic fieldB, is not necessarily the same on each side of an edge, a choice has t
made to define the value d&, that will be used in the expression of the Roe matrix. In
the Roe matrix, the same average procedure is applieB:fand B, (see [6]). Hence this
average has also been chosenBgy

B _\/pKBn,Ke‘i‘\/PKeBn,K
VoK + /Pre
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2.3. Second Order Extension

The second order accuracy of the scheme in space and time is ensured by a MUSCL
method and an explicit Runge—Kutta scheme for the time discretization.

Let U™ be the values of the staté at timet". We first calculaté) "™*/? at timet" + 4!
by using the first order scheme (8)—(10). Those “predicted values” are then used to eve
an approximation of the gradient of the discrete solution. For any given primitive varia
u associated withJ, its gradient on the ceK is estimated by

1
(VUK = = > UeNex|el
| | ecdK

with ug defined as a simple average

1
Ue = E(UK + Uke).

Classically, in order to avoid the creation of new extrema in the linear reconstruc
solution, the gradients have to be limited. For each kel 7,,, (Vu)k is replaced by
(Vu), with

(Vu)x = ak(Vu)k

ak = Min(1, @max <min)

o _ Umax— Um

max = —
Amax

P Um — Umin

mn= ——,
Amin

where Umax=MaXecsk (Uke), Umin=MiNecyk (Uke), Um=MaX(Umin, Min(Ux , Umax),
Amax= MaXyck | (VU)K - (X = Xk) |, Amin= Minyck [(VU)k - (X — Xk)|, Xk denotes the cen-
ter of K. For near-uniform regions, we hawg,,x~ 0 andAnin >~ 0, so we use a lower limit
(e.g., 109 for those values in order to avoid degeneracy of the calculation. This limite!
not very compressive (see, for example, the numerical study [18]) but seems to be rc
enough to avoid instabilities near strong discontinuities.

Finally the values ob) at timet"*! are defined as

At +1 +3
Ugtt = UR — K] > @(UQKZ, Ueks, ne,K)lel 12)
ecoK

with Ugﬁl/z the interpolated values &f"t1/2 at the midpointx. of the edgee of K :

1 1 -
Ulke = UR? + (V). - (e — k).
2.4. Description of the Mesh Adaptation Technique

The shock capturing problem in astrophysics is the main application of our code.
kind of problem generally involves multiscale phenomena. To have both great accuracy
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small CPU time, the solution is to use adaptive refinement, which is now widely applied
CFD methods (see, for example, [15, 12] and the references therein).

Our mesh adaptation strategy consists of a local enrichment of the initial grid by add
some new cells to the area where the refinement sensor is too high. Our sensor is bas
the gradient of the sonic mach number; it has the expression

re=v(F)
= i
C /k

where|V| is the velocity modulus andis sound speed given by

: (13)

7P
P

A more appropriate sensor should involve magnetic terms. However, for our applicatic
this “hydrodynamic sensor” is accurate enough to detect interesting cells which have tc
refined.

When the steady steady state is reached on the initial coarse mesh, the refinement s
Rk is calculated in each cell; then the elements are ordered from the highest vétue of
to its lowest. At this stage, the number of cells that have to be refined can be chosen in
different ways:

(i) by imposing their number,
(i) by imposing the lowest value of the sensor above which a cell has to be refine

The advantage of the first solution is to ensure a control of the number of cells in 1
adapted mesh. Then our refinement technique consists in dividing each selected tria
independent of its neighbours, into 4 “child triangles” as illustrated in Fig. 2. Note th
each new element is homothetic (up to a rotation) to its parent, it means that new ec
are exactly parallel to edges of the parent cell. This avoids the creation of a dege
ated triangle, but the adapted grid is a non-conformal triangulation (hanging nodes
created).

Finally the solution on the created mesh is initialized with the one calculated on the init
coarse grid and a new calculation is performed until convergence to the steady state
course, all of this process can be performed again if the solution on the refined mesh is
precise enough.

LEVEL 0 LEVEL 1 LEVEL 2

FIG. 2. The 2 iterations of the refinement procedure. The resulting mesh is a non-conformal triangulatior
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2.5. Entropy Correction

A well known default of the Roe scheme is that it can generate a shock which viol
the entropy condition. A possible solution to deal with this drawback is to use Harte
classical entropy fix; alternative approaches are also possible (see, for example, [1, 1

The main idea of Harten’s entropy correction (see [13]) is to introduce some numel
viscosity in the vicinity of sonic points. Since a non-entropic discontinuity may only a
pear when an eigenvalue tends to 0, the numerical flux (10) is modified by changing
eigenvaluesi| by W (1) with (see [13]),

{m, NEX)
W(L) = (14)

22 482
%, [A] <6,

wheres controls the amplitude of the additional artificial viscosity. In case of hypersot
flows, § is chosen as

8 =8(|ul +cr) (15)

with u+ ¢ as the fast magnetosonic eigenvalue of the Roe matrix. It means that, in s
cases, the parametehas to be tuned until some spurious instabilities are damped. In [2
the control of the size of has been investigated in the case of hypersonic flows aroun
blunt body.

3. CONSISTENCY WITH THE CONSTRAINT V-B=0

A weak consistency of the scheme (8)—(10) with the constfair® =0 can be proved
under general hypothesis. In [3], F. Bouchut studies numerical methods which exe
preserve the Gauss—Poisson equation when solving the charge conservation and May
Ampere equations. His idea has been directly applied to the conservatdnB®& 0 in
the case of MHD equations in [7]. We recall here this result.

Let 7y, be a conformal triangulation.

Let NV}, be the set of all vertices if,.

Leton (N € NV;) be the piecewise affine functio®{-Lagrange function) such that

1 forx = xn

X) = 16
onx) {O forx = xn YN’ € M andN’ # N. (16)

Then if, for each edge, the numerical flux related to the Faraday equation is parallel tc
edge, then

vneN,VN € N, / (BRtt —Bp) - Von dx =0, a7
RZ

whereBj, is the piecewise constant function such tiate K, BJ)(x) = Bg. If the initial
conditionB? is such that

VN € N, /Bg-dex=o, (18)
R2
then (17) yields

YN € A, / BI.Ven dx = 0, (19)
RZ
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FIG. 3. Correspondence between cellsffandZ?.

Equation (19) is a weak formulation of the equatidnB = 0. That's the reason why this
property is called “weak consistency.”

In our case, by construction of the scheme, at each edge, the perpendicular compone
the magnetic numerical flux is zero (becatzgs constan), but, because of the refinement
procedure, there are some hanging nodes inthe grid. So the previous result has to be ext:
to such triangular meshes.

Let 7,2 be the primary conformal triangular grid (see Fig. 8§, the set of all edges
in 7,2, NP the set of all vertices ir7,?, 7, the resulting mesh after an arbitrary number
of refinement stages, ai&), the set of all edges iff,. The numerical scheme (8)—(10) is
consistent with the conditioW - B =0 in the following sense:

WEAK CONSISTENCYPROPERTY  For any Ne AP, let oy be the P-Lagrange function
defined aspy is piecewise linear on any cell gf° and

0 {1 for x = xn (20)
X) =
N 0 forx = xn YN” € M0 and N # N.
The schem&)—(10)verifies the property
vn e N,VN e A?, / (Bitt —Bp) - Von dx = 0. (21)
R2

Remarks.

e This means that if the initial solution satisfi&s- B =0, this constraint will be
preserved in a weak sense at each time step. However, note that theoretically, (21) doe
prevent the accumulation of numerical approximation errors. But numerical results of
next section will show that those errors remain negligible.

e The resultis still true in 3D for tetrahedral meshes.

Proof. Our proof is a direct extension of the proof given in [7]. (&) be the support
of pn (Fig. 4).
The finite volume formulation (8) yields

At
Bi'=B} — — ®p(UR, URg Nex)l€l. (22)

|K| ecdK
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Equation (22) yields easily

/(Bﬂ*l—Bﬂ)~V¢Ndx=—At > Vo ®s(UR URe nex)lel  (23)
R? KeQn, ecdK

since in anyK € Qy ﬁThO, Von is constantVeg n denoting its value iK. Conservation
of the scheme gives

CDB(UQ,UEE, ne’K) = —dJB(U,Qe,U,Q,ne,Ke). (24)

So by (23), we get

/Z(Bﬂ+1 —B) - Vendx = —At 3 (Vorn — Voken) - Pe(UR. URe. Nex) le]
R

ecQn

— At Y Vern - @a(UR. URe. Nek) lel. (25)
eci2n

So we can distinguish three types of edges:

(i) The edgee is of type 1(eC dQn). Since®g(UE, UR,, Nex)//e and px n =
—(lex nI/2|KDnk N (the notationsnk n and ex n are defined in Fig. 4), we have
Vo N - Pe(UR, Uge, Nex) =0.

(i) The edgeeis of type 3 € C Shande ¢ SP). By definition ofpy, we haveV o n =
Vpken SO

(V(pK,N - V‘pKe,N) ° @B(UQ, Ulze’ ne,K) = 0‘

(iii) The edgeeis of type 2 eC N2 ande ¢ dQy). Sincepk N = gke n alonge and
®p(Ug, Uge, Nek)//€, we have(Vok N — Voken) - Pa(UR, URe Nex) = 0.

Finally, taking into account (i), (i), (iii), we get

Z Von - ®g(UR, Uge, Nex)lel =0
KeQy, ecdK

hence
/ (BE*L —BY) - Vo dx =0
R2

which is the desired result.ll

Note thatgy being theP1-Lagrange function related to the nobleof a triangular grid,
the vectorVy is constant on each cefl surroundingN and its special orientation gives
step (i) of the proof. This fundamental feature of the test functions is no more satis
for Q! functions on a rectangular grid. So we cannot expect the consWait=0 to be
preserved on cartesian grids as will be numerically shown below.

To test the numerical validity of this weak consistency property on general triangt
meshes, calculations have first been performed on the classical shock tube problem o
and Wu [4]. This problem is physically monodimensional (but the grid is 2D), so the norr
component oB is expected to remain constant. All the following numerical calculatior
have been performed with the Roe scheme with the second order extension.
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EDGES OF TYPE 3
AN

EDGES OF TYPE 1|

EDGE OF TYPE 2

Mach

368

3416
3.152
2.8RR
2624
2.36

2.096
1.832
1.568
1.304
1.004

0.776
0.512
(.248
0016
.28

{1,544
(). ROR
N -1.072

1.336

FIG. 4. Support ofpy.

FIG. 15. Results on the refined grid.
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Mach
T4 368
70475 1416
6605 1152
63425 2888
2624
136
2096
1.832
1.568
1304
104
0776
512
28175 0.248
2468 S
| ERTEE _—
B 176
B | 075 (1. 808
) 1.055 B .72
. 070235 . 1.336

Mach
368
3416
X152
2888
2.624
136
2,096
1.832
1.568
1304
1.4
0776
0.512
0.248
(L.016
0.28
0544
-(LB08
1.072

-1.336

FIG. 16. Results on the 7000 elements grid.

FIG. 17. Results on the 20,000 elements grid.
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Initial discontinuity

/

Periodic boundary conditions

FIG. 5. Non-conformal triangulation for the shock tube problem. The full domain contains 4000 cells.

The 2D grid is shown in Fig. 5 and is a non-conformal triangulation. At im0, the
domain is separated in two parts. The initial data are

uU=0y=2
o = 1; BX.| =0.75 By,| =1; P = 1
pPr = 0.125 BX,I’ = 0.75; By'r = _1.; pr = 0.1.

The results are presented in Fig. 6 Witk 0. The variableB, is plotted forCFL = 1; we can

DENSITY PRESSURE
0 160 320 480 640 800 0 160 320 480 640 800
1 .2 I Il I Il 1 1 I Il 1 1 .2 1 .2 L L 1 1 L 1 L Il I 1 '2
1.0 F1.0 1.0} 1.0
0.8] 1-0.8 0.8{ 1-0.8
0.6| 0.6 0.6 1-0.6
0.4{ 0.4 0.4{ lo.4
0.2] Lo.2 0.2| lo.2
0o 0.0 07— 0.0
0 160 320 480 640 800 0 160 320 480 640 800
x x
Bx CFL=1. Bx CFL=0.5
0 160 320 480 640 800 0 160 320 480 640 800
O.Q 1 1 1 1 A 1 I Il 1 0‘8 0'9 I Il 1 Il i 1 I Il L 0.8
0.79| L0.79 0.79 L0.79
0.78| Lo.78 0.78 078
0.77 L0.77 0.77 F0.77
0.76) L -0.76 0.7§ L -0.76
0.7 ' 0.75 0.7 | 0.75
0.74 1-0.74 0.74 L0.74
0.73) L0.73 0.73 -0.73
0.72 lo.72 0.72 -0.72
0.74] 10.71 0.74 L0.71
o7+ 0.7 0.7 ——————— 0.7
0 160 320 480 640 800 0 160 320 480 640 800
x x

FIG. 6. Shock tube problem.
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show an error of a few percent which does not decrease if we use aldkeNevertheless,
no visible effects can be seen on the other variables.

The second test case concerns a reflected shock which has been proposed in [1
domain of the calculation is rectangulare [0, 3], y € [0, 1]. This domain is larger than in
[1] in order to see the area after the reflection. The boundary conditions are the follow
The left and upper bondaries are fixed respectively with the values

P = 1; BX’| = 0.5; By,| = BZ,| =0.

u =29 vy =w =0; P=—
Y

or = 1460 Bxr = 0.68379 Byr = —0.1018 B.r =0.
u = 2.716 v = —0.405 wy =0, pr = 1.223

The lower boundary is reflective and the right boundary is an outgoing interface. -
introduction of those boundary conditions is done in the following way.

We use “fictitious cells,” which means that, for each boundary Ke(e denoting the
edge on the boundary), we create a “fictitious cil{'out of the domain which is the mirror
image ofK aboute. We set the values of variables iy regarding the type of boundary.
For an outgoing interface, the valueskn are the same as iK. For an inflow interface,
the values inkK, correspond to the inflow variables. Finally, for a reflective boundary, tl
density, the pressure, and the tangential components of the magnetic field and the ve
in K¢ are the same as iR andBge - n=—Bk - n, Vke - n=—V - nwheren is the normal
vector to the interface.

At t =0, the domain is initialized with the values of the left boundary. The solution
this problem is a steady state with &2hock.

The calculation has first been performed on an fine unstructured triangular grid
Fig. 7) (CFL=0.8 and3 =0.2). The result ofB, is presented in Fig. 8. We see that the
shock and its reflection are well captured. Small variations are present in areas whic
expected to be constant. However, it can be noted that the magnitude of those instab
is less than 2% compared to the magnitude of the variBplét’s less than the order of the
instabilities which have been observed for the shock tube test case. As it was expecte
on rectangular meshes, the result is completely unstable (see Fig. 11).

FIG. 7. Fine grid of 15,000 elements for the reflection problem.
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Mach Vx
244373 3.02993 3.03025
235267
226162
217057
207951
198846
1.89741
180633 195917
1.7153 L8DG16
1.62425 1.65315
1.53319 1.50013
1.44214 134712
L3s1W 19411
126003 L0411
B 116898 B () 88808
S | 07793 0,73507.
(). 98687- .58206
— [L.B93582 0.52434 (142904
| (804767 1 (1.37695] ! 0.27603

071371 11.229506] 0.12302

FIG. 20. Results of the mass loading simulation.

We have also performed the same test case on a initially coarse triangular grid &
two refinement steps (see Fig. 9) in order to analyse the behaviour of the scheme |
non-conformal grid. The result is presented in Fig. 10 and compares quite well with the
obtained on the conformal grid. The main difference is the presence of some numer
instabilities at the upper left corner, but their order of magnitude remains small. The ¢
vergence histories, on the refined grid and on the fine grid, are presented Bantheable
during 15,000 time steps in Fig. 12. The residue at tifnis defined as

Iog</x/y\BQ|dxdy—/X/y]BQ‘1]dxdy>. (26)

The convergence level is higher on the refined grid because spurious oscillations in
uniform areas are lower on this grid than on the fine one. Bheontours presented in
[1] are more stable, but we emphasize the fact that our results have been obtained wit
any correction ofB or modification of the MHD equations even on adaptively refinec
grids.

4. THE 2D SIMULATIONS ON ADAPTIVELY REFINED MESHES

4.1. Interaction of a Plasma with a Cylinder

The first 2D simulation concerns the interaction of a supersonic plasma with a perfec
conducting cylinder. Because of the 2D geometry, the only stable configuration is wi
the magnetic field is aligned with the cylinder axis (see [11]). Consequently, this probls
corresponds to a hydrodynamic case with a special form of the state equation. The valu
upstream physical data have been taken in the upstream conditions data for the intera
of the solar wind with planets (Mars, Venus, ...). After normalization [12] the upstrea
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—a 0921564
— 0.892702
086384
— (.834979
— 0.B06117
— 0777255
— 0.748393
S 0.719532
— 0.69067
— 0.661308
— 0.632947
0.604085
S ().575223
S (1546362
__ (.5175

FIG. 8. Bx contours for the reflection problem on the fine grid.

FIG. 9. Refined grid of 9000 elements for the reflection problem.

o 0918804
— 0887794
— 0.856785
e (0.825776
— 0.794767
— 0.763758
SN (732748
— 0701739
S (1.67073

— 0639721
0608712
e 0.577702
— 0.546693
— 0515684
o 0484675

FIG. 10. Bx contours for the reflection problem on the refined grid.
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—a 1.20305
s 113213
106121
0990292
— 0919372
_ 0.848453
— 0.777534
0706614
S 0.635695
0564776
— 0.493857
0.422937
0352018
0281099
0.21018

FIG. 11. Bx contours for the reflection problem on the cartesian grid.

dimensionless data values aye= 3)

p=1

3
=10

0

(27)

p=06
) 0
B=1(0

1

The unrefined full domain and the refined grid are shown in Fig. 13. The boundz
conditions are the following: inflow for the left side and free stream conditions for the thr
others.

104 0.4—l -

0.2+
0.0
~0.2-

—0.4-
-104 ~

RESIDUE OF Bx
#

RESIDUE OF Bx
Fa

~0.6

=15+

u
. -0.8- BT R

10" 10’
ITERATIONS ITERATIONS

FIG.12. Convergence histories for the reflection problem. The left figure concerns the refined grid for 15,(
time steps and the right one concerns the fine grid for 10,000 time steps.
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FIG. 13. The unrefined full domain and a part of the refined grid.
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The refined grid has been obtained after 3 adaptation cycles. The initial coarse
contained 500 cells and the final adapted one 7000. The convergence history for the de
is presented in Fig. 14 for the three refinement steps. Numerical results are shown in Fi
the perpendicular component Bf the mach number, and the component of the veloci
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FIG. 14. Convergence on the density, for the three refinement steps.
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parallel to the incoming flow have been plotted. For all the calculations we have cho
5 =0.4 andCFL=0.8 in order to obtain a stable steady state.

As a comparison, we have performed the same calculation on two non-adapted gric
medium one of 7000 elements and a reference fine one of 20,000 elements. The resul
shown in Figs. 16 and 17. On the medium grid, the isovalues show a bad resolution of
shock and no recirculation behind the cylinder. On the other hand, the results on the
and adapted grids are in very good agreement. The only significant difference is the s|
instability which can be seen between the shock and the cylinder on the fine grid. In ¢
of the adapted mesh, the non-uniformity of the grid seems to prevent the apparition of s
instabilities. We have performed the same test case on a very fine grid of 80,000 elem
and the numerical results present the same features. A more precise comparison can be
using the values dB, along they = 0 axis, represented on Fig. 18. The refined grid line an
the cut line of the 80,000 elements grid are very similar. This proves the efficiency of t
refinement procedure which gives accurate results in region of interest with an optimi
number of cells.

4.2. Mass Loading Simulation

This second simulation is a 2D version of the cometary mass-loading problem. Arot
each comet, a neutral atmosphere is in expansion. The mass loading of the solar
comes from the ionization of those neutral particules. It is this new cometary plasma
creates the interaction between solar wind and the comet. Because of the ionization ¢
(A =1CP km) and the size of the cometary nucleus, we have to deal with different spat
scales. Unstructured triangular grids and automatic mesh refinement are very usef
perform this kind of calculation, because they permit a large range of cell size in the se
mesh (even in the initial grid).

3.0

i
2.5 /\h
(i

s refined grid
\ ------ BO000 elements
f \ 7000 elements
I
]
|

2.0+

Bz

=5

0.5+ \ //

0.0 I I I I [ I I I I 1

FIG. 18. Cutlines ofB,.
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FIG. 19. Cometary interaction region of 328 ionization scale lengths.

The mass loading phenomena is introduced in the MHD equations with a source terr
the continuity equation. Because of the small velocityl kmst) and the weak energy
of the new created cometary ions, the source terms on the other conservation equatio
neglected in a first approximation. The mass source term is of the form
e
S= Sr—z, (28)

where
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FIG. 21. Convergence history d8,.
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FIG. 22. Cutline of solar wind velocity along solar-comet line.

cannot reproduce the reality of the 3D interaction. Here we just want to prove that the ¢
is able to treat multiscale problems. Figure 19 represents the grid in the region of
interaction. The entire simulation domain is of 42 ionization scale lengths. The radius
of the central object is of BL0~° ionization scale length. After the refinement procedure
the number of cells in the adapted mesh is about 13,000.

Because of the very different scales of mesh size, a local time step technique has |
used to accelerate the convergence to the steady state. Meanwhile, a upper limit has
introduced: the local time step was boundedktiimes the smaller one and the valuekof
has been increased during the calculation (from 10 to 100).

The results are shown in Fig. 20. As in the case of the cylinder, we $eoR.4 and
CFL = 0.8 and the initial conditions of the inflow plasma are also the same. The calculati
of the source parameter is done in [12] and it leadS405. The resulting shock is located
at one ionization scale length in front of the comet. The convergence history is plottec
Fig. 21 for theB, variable. On the non-refined grid (9000 first time steps) we ckes&0
for the upper limit of the local time step. On the refined grid (iterations 9000 to 15,00
this limit has been increased to 100. In Fig. 22 we have represented the solar wind velc
along the sun—comet line. Along this line the number of new created ions increases a:
solar wind approaches the comet (situater &t0.), consequently the solar wind velocity
decreases as we can see just before and behind the shock.

5. CONCLUSION

In this paper, we have presented a new numerical method for multidimensional Mt
simulations. By adapting an idea of Bouchut [3], the weak consistency of our scheme v
the constrain¥ - B =0 has been proved on triangular grids, even on non-conformal one
The 2D numerical test cases have shown that this property seems to be sufficient to a
numerical errors due to the non-exact preservation of this constraint. The 2D simulation
plasma flows have been performed and have shown the interest of using adaptively ref
triangular grids to have a high order of precision, even for multiscale phenomena, wit
low CPU and memory cost. Our main objective is now the application of this humeric
method to 3D geometry with tetrahedral meshes.
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